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Abstract
The paper provides an introduction and survey of conservative discretization
methods for Hamiltonian partial differential equations. The emphasis is
on variational, symplectic and multi-symplectic methods. The derivation
of methods as well as some of their fundamental geometric properties are
discussed. Basic principles are illustrated by means of examples from wave
and fluid dynamics.

PACS numbers: 02.60.Jh, 02.60.Lj, 45.20.Jj

1. Introduction and overview

One of the great challenges in the numerical analysis of partial differential equations
(PDEs) is the development of robust stable numerical algorithms for Hamiltonian PDEs.
There is no shortage of motivation: Hamiltonian PDEs arise as models in meteorology and
weather prediction, nonlinear optics, solid mechanics and elastodynamics, oceanography,
electromagnetism, cosmology and quantum field theory, for example. It is now well known
from the development of algorithms for Hamiltonian ODEs that ‘geometric integration’ is
an important guiding principle. The geometric integration of Hamiltonian ODEs is now a
well-developed subject with a range of fundamental results (cf Hairer, Lubich and Wanner
[61] and Leimkuhler and Reich [85]).

There is a principal difficulty that arises when generalizing from Hamiltonian ODEs to
Hamiltonian PDEs. The phase space goes from finite to infinite dimension or, in other words,
the fields are parameterized by time and space. For illustration consider the semi-linear wave
equation

utt = uxx − f (u), (1)

where f (u) is a given smooth function, and the field u(x, t) is scalar valued. By letting v = ut ,
the wave equation (1) can be viewed as an infinite-dimensional Hamiltonian system

Jut = δH

δu
, J =

[
0 −1
1 0

]
, u = (u, v)T ,

δH

δu
=
(

∂H

∂u
,
∂H

∂v

)T

. (2)
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The canonical coordinates (u, v) take values in a function space, for example a subspace of
the L-periodic square-integrable functions. On the chosen function space, the symplectic form
and Hamiltonian functional are

� =
∫ L

0
dv ∧ du dx, H(u) =

∫ L

0

[
1

2
v2 +

1

2
u2

x + u(F )

]
dx, F ′(u) = f (u).

Furthermore, δH/δu, δH/δv denote functional derivatives of H with respect to u and v,
respectively.

By taking a finite-mode approximation (say a finite Fourier series in x), the PDE is reduced
to a Hamiltonian ODE for which a wide variety of numerical methods exist. In this setting, the
principal difficulty is proving—and understanding—the convergence as the number of modes
tends to infinity.

The formulation (2) treats the space coordinate passively. The form of the spatial
variation—periodic functions, say—is fixed. There are however many problems where it
is advantageous to consider space and time on an equal footing. In this case, one uses a
multi-symplectic Hamiltonian formulation of (1)

Kzt + Lzx = ∇Sz(z), z ∈ R
4. (3)

The 4 × 4 matrices K and L are skew-symmetric,

K =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 , L =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 . (4)

The gradient ∇Sz(z) is the standard gradient on R
4 and S is the algebraic function

S(z) = 1
2v2 − 1

2w2 + F(u) with z = (u, v,w, φ)T .

Both the classical and the multi-symplectic Hamiltonian formulations have their merits
when it comes to numerical discretization. The classical Hamiltonian formulations are well
suited for the method of lines approach to the discretization of evolutionary PDEs. The method
of lines approach typically leads to completely different discretizations in space and time.

On the other hand, multi-symplectic Hamiltonian formulations rely on local conservation
laws and, hence, are well suited for numerical discretization methods that emphasize local
properties. For example, the symplectic properties of interior points can be treated differently
from boundary points. One way to illustrate this point is to simulate the wave equation (1)
with ‘absorbing’ boundary conditions ut = ±ux at x = 0, L. This problem cannot be stated
in the form (2) as the energy is no longer a Hamiltonian function (the variational derivative
of H(u) no longer vanishes at the domain boundary). However, local conservation laws of
symplecticity, energy and momentum still hold everywhere in the interior x ∈ (0, L). This
property is demonstrated for the Preissman box scheme discretization (see section 6 and the
appendix for details) applied to (1) with f = 0. Due to the absorbing boundary conditions, an
initial pulse placed at the centre of the domain will eventually be radiated out of the domain.
This qualitative solution behaviour is clearly captured by the Preissman box scheme as can be
seen from figures 1 and 2. Energy is exactly locally preserved for the simulation although the
global energy is strictly decreasing once the wave reaches the boundary.

Multi-symplectic methods also allow for a combined treatment of spatial and temporal
discretizations. For the above numerical example, this implies, for example, that the absorbing
boundary conditions can be implemented such that no spurious numerical reflections are
generated3.
3 This property is somewhat special for the 1D linear wave equation and the Preissman box scheme discretization.
The situation becomes more complex in higher dimensions and in the case of non-local absorbing boundary conditions.
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Figure 1. Time evolution of an initial pulse placed at x = 10 under the Preissman box scheme
applied to the linear wave equation utt = uxx with absorbing boundary conditions ut = ±ux at
x = 0, L.
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Figure 2. Time evolution of the total energy and the spatial l2-norm of the numerical solution un
i

under the Preissman box scheme.

A potential difficulty with the multi-symplectic formulations is the enlarged phase space
and the non-uniqueness of the formulations. Multi-symplectic formulations are also known
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only for a restricted class of Hamiltonian PDEs. While the frameworks for constructing
multi-symplectic schemes are relatively new, some algorithms that can be shown to be multi-
symplectic have been widely used in computational applications for a long time. Take for
example the well-known and widely used leapfrog scheme [111]

un+1
i − 2un

i + un−1
i = �t2

�x2

(
un

i+1 − 2un
i + un

i−1

)− �t2f
(
un

i

)
,

which provides a multi-symplectic method for the wave equation (1) [23]. The leapfrog
scheme is also at the heart of widely used schemes such as the Yee scheme [150] in
electromagnetism [150] and the Hansen scheme [62] in fluid dynamics.

This survey aims to provide an introduction and overview of existing numerical methods
and their conservation properties for Hamiltonian PDEs. Most of the discussion is restricted
to systems with time and one space dimension as independent variables. The emphasis is on
symplectic, multi-symplectic and discrete variational methods.

Conservation properties are very important in the discretization of Hamiltonian PDEs, but
the equations themselves are not in conservation form. The conservation laws are derived
equations. The issues of discretization are therefore very different from the theory for
hyperbolic conservation laws (see Leveque [87] for example), where the equations themselves
are in conservation law form.

2. From Hamiltonian ODEs to Hamiltonian PDEs

In this section, a brief overview of the concepts needed from Hamiltonian mechanics is given
with emphasis on the aspects of ODEs that are needed in generalizing to PDEs. The textbooks
by Arnold [4], Olver [116], Goldstein [53] and Marsden and Ratiu [100] provide excellent
introductions to this subject area.

2.1. Finite-dimensional Hamiltonian systems

Historically, the construction of a Hamiltonian system started with a Lagrangian functional

L [q] =
∫ t1

t0

dtL(q(t), q̇(t)) with L(q, q̇) = 1

2
q̇T Mq̇ − V (q)

in the case of a conservative mechanical system with potential energy V (q), positions q ∈ R
n

and (diagonal) mass matrix M. Taking the functional derivative∫
dt

δL

δq
· ξ = lim

ε→0

L [q + εξ] − L [q]

ε

=
∫ t1

t0

dt[q̇T Mξ̇ − ∇qV (q) · ξ]

= −
∫ t1

t0

dt[(Mq̈ + ∇qV (q)) · ξ]

for variations ξ : [t0, t1] → R
n with vanishing boundary variation, i.e., ξ(t0) = ξ(t1) = 0,

leads to the Euler–Lagrange equation

0 = δL

δq
= Mq̈ + ∇qV (q).

The Hamiltonian form is obtained by introducing (via a Legendre transform) the canonical
momentum

p = ∇q̇L(q, q̇) = Mq̇



Numerical methods for Hamiltonian PDEs 5291

and the Hamiltonian function

H(q, p) = pq̇ − L(q, q̇) = 1
2 pT M−1p + V (q).

The Hamiltonian system is now

ṗ = −∇qH(q, p) = −∇qV (q), q̇ = ∇pH(q, p) = M−1p.

We further abstract this formulation by introducing the phase space variable z = (qT , pT )T ∈
R

2n and the skew-symmetric matrix

J =
[

0n −In

In 0n

]

and the abstract Hamiltonian differential equation

Jż = ∇zH(z). (5)

It is immediately deduced that the Hamiltonian (energy) H is conserved along solutions z(t)
since

Ḣ = ∇zH · ż = −żT Jż = 0.

Denote the flow map generated by a Hamiltonian system (5) by �t,H : R
2n → R

2n. The
flow map preserves the symplectic 2-form

ω = 1

2
dz ∧ J dz = dp ∧ dq =

n∑
i=1

dpi ∧ dqi ,

since solutions z(t) = �t,H (z0) satisfy the linearized equation

J dż(t) = A(t) dz(t), A(t) = Hzz(z(t)),

and since

dz ∧ (A dz) = (AT dz) ∧ dz = −dz ∧ (AT dz)

implies dz ∧ (A dz) = 0 for symmetric matrices A.
Given a (constant) skew-symmetric matrix J, Hamiltonian differential equations (5) form

a Lie algebra with the associated group formed by the symplectic transformations [4]. In finite
dimensions, a comparable situation arises from the Lie algebra of skew-symmetric matrices
and the associated Lie group of rotation matrices. An important difference exists however
between finite- and infinite-dimensional Lie algebras. In finite dimensions, the Lie algebra
provides a parameterization of the associated group near the identity. This is no longer the case
for Hamiltonian differential equations, i.e., not all near identity symplectic transformations 	

can be generated by a flow map �τ,H̃ of an appropriate Hamiltonian H̃ . However, provided
the symplectic transformation 	 is analytic, one can find (at least locally) a Hamiltonian H̃

such that

‖	(z) − �τ,H̃ (z)‖ � c1 e−c2/τ ,

where τ is given by

τ = sup
z∈K⊂C

2n

‖	(z) − z‖,

c1, c2 are constants independent of 	 and K ⊂ C
2n is an appropriate subset. See the papers

by Neishtadt [113], Benettin and Giorgilli [8], Hairer and Lubich [59] and Reich [118] for
details.
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This result has important ramifications for numerical methods. Given a discrete temporal
lattice tn = n�t and a numerical one-step method

zn+1 = 	�t(zn)

of order p � 1, we obtain nearly exact conservation of a modified Hamiltonian H̃ provided the
map 	�t is symplectic and the step-size �t is sufficiently small. The modified Hamiltonian
H̃ may be chosen such that

|H̃ (zn) − H(zn)| = O(�tp).

A classical example is provided by the second-order Störmer–Verlet method

pn+1/2 = pn − �t

2
∇qV (qn), qn+1 = qn + �tM−1pn+1/2,

pn+1 = pn+1/2 − �t

2
∇qV (qn+1).

The textbooks by Sanz-Serna and Calvo [125], Hairer, Lubich and Wanner [61] and Leimkuhler
and Reich [85] provide an introduction to symplectic integration methods and modified
equation analysis. One can also start with the Lagrangian formulation and derive algorithms
based on a discrete variational principle leading to variational integrators and this approach is
reviewed in Marsden and West [102].

Two further concepts from Hamiltonian mechanics which will be needed for the PDE case
are Hamilton’s principle and Poisson brackets. It is easily verified that Hamilton’s equations
may be derived from the Lagrangian functional

L [z] =
∫

dt

[
1

2
z(t)T Jż(t) − H(z(t))

]
by varying both the qs and ps, i.e., δL /δz = 0. Such a formulation is useful for discussing
symmetries and their associated invariants (Noether’s theorem).

When J is invertible, one can introduce the Poisson bracket

{F,G} = (∇zF)T J−1∇zG

for any two functions F,G : R
2n → R. Poisson brackets {·, ·} can be introduced in a

more general setting under the conditions that (i) {F,G} = −{G,F } (skew-symmetry) and
(ii) {F, {G,H }}+{G, {H,F }}+{H, {F,G}} = 0 (Jacobi identity) [116]. Given a Hamiltonian
H, the time evolution of a function F is now determined by

Ḟ = {F,H }
and we conclude, in particular, Ḣ = {H,H } = 0 (conservation of energy) and żi =
{zi,H }, i = 1, . . . , 2n (Hamiltonian equations of motion). Functions C : R

2n → R, which are
preserved for arbitrary Hamiltonians H, i.e., Ċ = {C,H } = 0, are called Casimir functions.
Poisson bracket formulations are relevant, among other reasons, for rigid body dynamics.
The Poisson bracket formulation is also used in the derivation of symplectic time-stepping
methods, which are based on a splitting of the Hamiltonian H into integrable problems Hk

such that H = ∑
k Hk and composition of the associated flow maps ��t,Hk

. For a survey on
splitting methods, see McLachlan and Quispel [105].

2.2. Infinite-dimensional Hamiltonian systems

An introduction to infinite-dimensional Hamiltonian system can be found in the textbooks by
Olver [116], Marsden and Ratiu [100] and Salmon [123] as well as in the survey articles by
Morrison [110] and Shepherd [129].
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Let us develop the basic ideas by describing the formal limiting process to an infinite-
dimensional system for the semi-linear wave equation (1). Consider a spatial discretization

üi = ui+1 − 2ui + ui−1

�x2
− f (ui), i = 1, . . . , I, (6)

with zero Dirichlet boundary conditions u0 = uI+1 = 0. Equations (6) are a finite-dimensional
Hamiltonian system with ‘coordinates’ qi = ui , ‘momenta’ pi = u̇i , i = 1, . . . , I ,
Hamiltonian

H�x(q, p) =
I∑

i=1

�x

[
1

2
p2

i +
(ui − ui−1)

2

4�x2
+

(ui+1 − ui)
2

4�x2
+ F(ui)

]

with F ′(u) = f (u), q = (q1, . . . , qI )
T , p = (p1, . . . , pI )

T and Poisson bracket

{F�x,G�x}�x = �x−1
∑

i

[∇qi
F�x∇pi

G�x − ∇pi
F�x∇qi

G�x

]

= �x

[(
1

�x
∇qF�x

)
·
(

1

�x
∇pG�x

)
−
(

1

�x
∇pF�x

)
·
(

1

�x
∇qG�x

)]
.

The following notation has been used ∇uG�x = (
∂u0G�x, . . . , ∂uN−1G�x

)T
. In the limit

�x → 0 and I�x = L, we formally obtain q(x) = u(x), p(x) = u̇(x), x ∈ [0, L] with
Dirichlet boundary conditions u(0) = u(L) = 0. We also have

H[q, p] = lim
�x→0

H�x =
∫ L

0
dx

[
1

2
p2 +

1

2
q2

x + F(q)

]
and Poisson bracket

{F,G} = lim
�x→0

{F�x,G�x}�x =
∫

dx

[
δF
δq

δG
δp

− δF
δp

δG
δq

]
.

Indeed, the functional derivative δF/δq is, for example, defined by∫
dx

δF
δq

· v = lim
ε→0

F[q + εv, p] − F[q, p]

ε
≈
∑

i

∂

∂qi

F�x(q, p)vi

and we obtain

�x
δF
δq

(xi) ≈ ∂

∂qi

F�x(q, p).

It follows that the wave equation (1) can be written in the ‘classical mechanics’ form

ṗ = −δH
δq

, q̇ = +
δH
δp

.

We may also introduce the symplectic form

ω =
∑

i

�x dpi ∧ dqi

for the spatially discretized semi-linear wave equation, which, in the limit �x → 0, becomes

� =
∫

dx dp ∧ dq

and is preserved under the time evolution of the semi-linear wave equations.
More generally, infinite-dimensional Hamiltonian systems are defined by (i) a phase

(function) space z ∈ Z, (ii) a Hamiltonian functional H : Z → R and (iii) a Poisson bracket
{F,G}, which has to satisfy the skew-symmetry condition {F,G} = −{G,F} and the Jacobi
identity {F, {G,H}} + {G, {H,F}} + {H, {F,G}} = 0.



5294 T J Bridges and S Reich

There are other, largely equivalent, ways to introduce infinite-dimensional Hamiltonian
systems. As an example, we mention that the semi-linear wave equation (1) may be derived
from the Lagrangian functional

L =
∫

dt

∫
dx

[
1

2
u2

t − 1

2
u2

x − F(u)

]
(7)

and the standard variational derivative of L .
One of the most well-known Hamiltonian PDEs is the KdV equation

ut = −uux − uxxx = −∂x

(
1
2u2 + uxx

)
(8)

which is a non-trivial application of the Hamiltonian framework. The KdV equation conserves
the energy

H[u] =
∫

dx

[
1

6
u3 − 1

2
u2

x

]
,

since

Ḣ =
∫

dx

[
1

2
u2ut − uxuxt

]
=
∫

dx

[(
1

2
u2 + uxx

)
ut

]

=
∫

dx

[(
1

2
u2 + uxx

)
∂x

(
1

2
u2 + uxx

)]
= 0

under appropriate boundary conditions. It can also be verified that

C[u] =
∫

dx u

is a conserved quantity, i.e., Ċ = 0. To derive a Hamiltonian formulation, we note that the
KdV equation may be written in the form

ut = −∂x

[
1

2
u2 + uxx

]
= −∂x

δH
δu

.

This formulation suggests the Poisson bracket

{F,G} = −
∫

dx
δF
δu

∂

∂x

δG
δu

,

which indeed satisfies the required condition of skew-symmetry and Jacobi’s identity. It turns
out that {C,F} = 0 for any choice of F and, hence, C is a Casimir function of the KdV Poisson
bracket.

Our third example of a Hamiltonian PDE comes from geophysical fluid dynamics. See
the textbooks by Salmon [123] and Durran [39] for an introduction to mathematical aspects of
geophysical fluid dynamics and numerical techniques. The equations of motion for a shallow
homogeneous fluid, in a coordinate system rotating at constant angular velocity f/2 about the
vertical, are

vt + (v · ∇x)v + f k × v = −g∇xh, (9)

ht + ∇x · (hv) = 0, (10)

where v ∈ R
2 is the horizontal velocity field, h is the fluid depth, g is the gravitational

acceleration and k is the unit vertical vector. The shallow-water equations (9) and (10)
preserve the Hamiltonian (energy) functional

H[h, v] = 1

2

∫ ∫
dx(h‖v‖2 + gh2).
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The fluid motion describes a transformation from initial particle positions, which we denote
by a = (a, b)T ∈ R

2 to their positions x(t, a) = (x(t, a, b), y(t, a, b))T ∈ R
2 at time t > t0.

This transformation allows us to express the continuity equation (10) in the equivalent integral
form

h(x, t) =
∫ ∫

da db h0(a)δ(x − x(t, a)), (11)

where h0(a) = h(a, t0) is the density at the initial time, δ(·) denotes the Dirac delta function
and x = (x, y)T ∈ R

2 are fixed Eulerian positions. We now take labels a ∈ R
2 and time

t ∈ R+ as independent variables and postulate the Lagrangian functional

L = T − V = 1

2

∫
dt

∫ ∫
da db h0(xt + f k × x) · xt − 1

2

∫
dt

∫ ∫
dx dy gh2. (12)

Note that we have to distinguish between a partial time derivative for fixed labels a ∈ R
2 and

a partial time derivative for fixed Eulerian positions x ∈ R
2. For a function f , the relation

between these two partial derivatives is given by

∂f

∂t

∣∣∣∣
a=const

= ∂f

∂t

∣∣∣∣
x=const

+ v · ∇xf.

To find the variational derivative and the associated Euler–Lagrange equations, we need
to first derive the variational derivative of V , i.e.∫

dt

∫ ∫
da db

[
∂V
∂x

· w
]

= lim
ε→0

V(x + εw) − V(x)

ε

=
∫

dt

∫ ∫
dx dy gh((−∇xh) · w),

where we made use of (11). By the divergence theorem and under appropriate boundary
conditions, we then obtain

−g

∫ ∫
dx dy h(∇xh · w) = g

∫ ∫
dx dy(h∇xh) · w.

Making use of the equivalent differential representation

h
∂(x, y)

∂(a, b)
= h0

for (11), we transform integrals over Eulerian positions x ∈ R
2 to integrals over label space

a ∈ R
2, i.e., ∫ ∫

dx dy[gh∇xh] · w =
∫ ∫

da db[gh0∇xh] · w

and, finally, obtain
δV
δx

= gh0∇xh.

Using this result and the functional derivative for T , we obtain the Euler–Lagrange equations

∂2x
∂t2

+ f k × ∂x
∂t

+ g∇xh = 0, (13)

where the last term is the gradient of (11) with respect to its first argument, evaluated at x.
Equations (13) are the shallow-water momentum equations from a Lagrangian fluid dynamics
perspective. Using v = xt and

∂v
∂t

∣∣∣∣
a=const

= ∂v
∂t

∣∣∣∣
x=const

+ (v · ∇x)v,

the equivalence to the Eulerian form (9) is immediate.
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2.3. Multi-symplectic Hamiltonian PDEs

Classical Hamiltonian formulations for PDEs take time as a preferred direction with space
treated passively. In many applications, it is advantageous to put space and time on an equal
footing. This leads to the idea of multi-symplectic Hamiltonian PDEs.

The simplest way to view a multi-symplectic formulation is to start with a Lagrangian
and take a covariant Legendre transform. In a covariant Legendre transform—also called total
Legendre transform—one eliminates all first-order partial derivatives and transforms to ‘poly-
momenta’ or ‘multi-momenta’. For example, starting with the Lagrangian for the semi-linear
wave equation (7), a covariant Legendre transform leads to momenta

v := δL

δut

= ut and w := δL

δux

= −ux,

a covariant Hamiltonian function

S = vut + wux − L = 1
2v2 − 1

2w2 + F(u)

and governing equations
0 −1 0

1 0 0
0 0 0




u

v

w




t

+


0 0 −1

0 0 0
1 0 0




u

v

w




x

=

f (u)

v

−w


 . (14)

Note that this multi-symplectic formulation differs from that introduced in (3). In fact, the
system (3) can also be deduced by a modification of the Legendre transform on differential
forms [15]. This example and its comparison with (3) highlight a key issue with Hamiltonian
PDEs. There are a number of ways to approach the construction of multi-symplectic PDEs,
and the Legendre transform in the PDE setting is not always reliable: it is often singular
and is difficult to define for higher order field theories [126]. See [7, 14, 15, 25, 40, 57, 82,
101, 114] for a range of approaches to multi-symplectic structures and multi-symplectic PDEs.

Fortunately, in most cases the multi-symplectic Hamiltonian PDE in one space dimension
and time can be reduced to the canonical form

Kzt + Lzx = ∇zS(z), z ∈ R
d , (15)

for some d � 3 where K and L are constant skew-symmetric matrices and S is a given
smooth function of z, and ∇zS is the classical gradient on R

d . This formulation of multi-
symplectic Hamiltonian PDEs has been widely used in wave propagation and pattern formation
(cf [13, 14, 16–19, 24]).

One weakness of the formulation (15) is that it is not coordinate free on the base manifold:
(t, x)-space. This is quite satisfactory for many applications where one wants to maintain the
distinction between space and time. On the other hand, it is possible to give a coordinate-
free formulation of the left-hand side of (15) for covariant PDEs using the theory of multi-
symplectic Dirac operators on the total exterior algebra bundle of the base manifold (see
section 7 and [15]).

In this paper, the abstract formulation (15) is taken as a starting point for the development
of numerical methods for multi-symplectic Hamiltonian PDEs. Equations of this form have
the property that symplecticity is conserved

ωt + κx = 0 with ω := 1
2 dz ∧ K dz, κ := 1

2 dz ∧ L dz, (16)

and when S does not depend explicitly on t and x, energy and momentum are conserved

Et + Fx = 0, E(z) = S(z) − 1
2 zT Lzx, F (z) = 1

2 zT Lzt ,

It + Gx = 0, G(z) = S(z) − 1
2 zT Kzt , I (z) = 1

2 zT Kzx.
(17)
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When designing a geometric integrator for (15), the principal requirement will be that the
discretization conserves symplecticity. It is not possible in general to exactly conserve energy
and momentum as well in a uniform discretization, but how closely energy and momentum
are conserved will be a property of interest. It should be kept in mind though that there are
cases where exact conservation of a discrete form of (17) could be preferable. This point was
stressed by Simo and his co-workers in the context of elastodynamics (see, e.g., [55, 130]).

In the previous subsection, it was shown that KdV has a classical Hamiltonian formulation.
However, it is not so easy to see that it is also multi-symplectic. Letting u = φx , the canonical
Lagrangian for the KdV equation is

L =
∫

dt

∫
dx

[
1

2
φxφt +

1

6
φ3

x − 1

2
φ2

xx

]
. (18)

This Lagrangian is degenerate and involves second derivatives and therefore standard theory
of Legendre transformation fails. However, as shown by Bridges and Derks [16], there is a
multi-symplectic formulation for KdV of the type (15) with d = 4, z = (φ, u, v,w)

K =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 , L =




0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0


 .

and S(z) = 1
2v2 − uw + 1

6u3.
Multi-symplectic formulations of the shallow-water equations (9) and (10) and related

equations in geophysical fluid dynamics are given in [21].

3. Semi-discretization and the method of lines

A popular method for discretizing PDEs is to discretize in space and time independently. The
PDE is first discretized in space resulting in a large system of ODEs. The resulting system of
ODEs is then integrated by an appropriate time-stepping method. This methodology may also
be applied to infinite-dimensional Hamiltonian systems [80, 90, 104]. However, particular care
is required to ensure that the resulting finite-dimensional system is also Hamiltonian. There
are two ways to achieve this in a systematic manner, either by starting from a Lagrangian
functional or by starting with the Hamiltonian functional and the Poisson bracket.

The paper by McLachlan [104] and the book by Leimkuhler and Reich [85] have a
summary of discretization methods for Hamiltonian PDEs based on the method of lines. The
book by Morton and Mayers [111] provides a general introduction to numerical methods for
PDEs. The books by Abbott [1], Abbott and Basco [2] and Durran [39] give a more detailed
introduction to discretization of PDEs in the context of fluid dynamics.

In this survey, special emphasis is put on Hamiltonian discretization methods. Clearly,
preservation of other conserved quantities can be important as well and such methods may
lead to other types of spatial and temporal discretizations. We mention the work of Jiménez
[77], Li and Vu-Quoc [91, 141], Strauss and Vázquez [133], Arakawa [3] and Salmon [124]
on conservative finite-difference methods. We would like to also mention recent work on
mimetic finite-difference methods by Shashkov and co-workers (see, e.g., [73, 128]) as well as
on discrete differential forms and their numerical implementation by Bossavit [12], Hiptmair
[63] and Desbrun et al [37]. The use of mimetic difference methods and discrete differential
forms are useful when the multi-symplectic PDEs are formulated in terms of continuous
differential forms (cf section 7).
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3.1. Discrete Hamiltonian approach

Let us assume that the infinite-dimensional system is characterized by a phase space Z,
a Hamiltonian functional H and a Poisson bracket {·, ·}. A discretization starts with a
finite-dimensional approximation Z�x to Z. Further, upon replacing exact integrals by some
quadrature formulae, we obtain a finite-dimensional energy approximation H�x(z) and a
bracket {·, ·}�x . The finite-dimensional equations of motion are then

ż = {z,H�x}�x, z ∈ Z�x.

These equations are Hamiltonian if the ‘numerical’ bracket {·, ·}�x can be shown to be anti-
symmetric and to satisfy the Jacobi identity. While anti-symmetry is relatively easy to achieve,
it can be impossible in some cases to ensure

{F�x, {G�x,H�x}�x}�x + {G�x, {H�x, F�x}�x}�x + {H�x, {F�x,G�x}�x}�x = 0.

This is the case, for example, for the shallow-water equations (9) and (10) and their non-
canonical Poisson bracket formulation. (See [129] for a discussion of non-canonical Eulerian
descriptions of the shallow-water equations.) In other cases, the above approach can be carried
out quite easily as we have already demonstrated in the previous section for the semi-linear
wave equation (1). A rigorous convergence analysis of the finite-dimensional Hamiltonian
approximation to the PDE limit is, in general, non-trivial. However, a second-order local
truncation error can easily be achieved by using symmetric finite-difference approximations
in H�t and {·, ·}�x .

The KdV equation (8) also possesses a non-canonical Poisson bracket but a finite-
dimensional Poisson bracket is easily found. Assume, for simplicity, that the domain
x ∈ [0, L) is equipped with periodic boundary conditions. We introduce grid points
xi = i�x, i = 0, . . . , N − 1,�x = L/N and solution approximations ui ≈ u(xi). A
simple approximation to the Hamiltonian is provided by

H�t(u) = �x

N−1∑
i=0

[
1

6
u3

i −
(

ui+1 − ui

�x

)2
]

where we set uN = u0 and u = (u0, . . . , uN−1)
T . Somewhat more care is required to discretize

the Poisson bracket. A possible choice is

{F�x,G�x}�x = −�x−1
N−1∑
i=0

[
∂ui

F�x

∂ui+1G�x − ∂ui−1G�x

2�x

]

= �x−1
N−1∑
i=0

[
∂ui+1F�x − ∂ui−1F�x

2�x
∂ui

G�x

]

where we set u−1 = uN−1. It is easy to verify that {F,G}�x = −{G,F }�x . The Jacobi
identity is trivially satisfied as

{F�x,G�x}�x = ∇uF
T
�xB∇uG�x

for a constant (skew-symmetric) structure matrix B ∈ R
N×N . The spatially discrete KdV

equations are now given by

u̇i = {ui,H�x}�x = −�x−1 ∂ui+1H�x − ∂ui−1H�x

2�x

= −u2
i+1 − u2

i−1

�x
− ui+2 − 2ui+1 + 2ui−1 − ui−2

2�x3
.
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Clearly, these finite-dimensional equations are not unique. Other choices for the spatial
discretization of the Hamiltonian and the Poisson bracket would lead to other finite-
dimensional approximations.

A particularly difficult problem to discretize is the Euler equations of fluid dynamics—in
the Eulerian representation. The Poisson bracket is non-canonical, and standard discretizations
result in a finite-dimensional Poisson bracket which fails to satisfy the Jacobi condition.
Indeed, the only known successful discretization which results in a proper finite-dimensional
Poisson system is one proposed by Zeitlin [151], which has been numerically implemented
by McLachlan [103]. However, this discretization only works for incompressible fluids in
two space dimensions subject to periodic boundary conditions, and no extension to other ideal
fluid equations is known.

We have only given examples for which the spatial mesh is homogeneous. Finite-
dimensional Hamiltonian approximation can also be derived for non-constant mesh sizes.
However, those discretizations can lead to spurious wave reflections across changes in the
mesh size. A detailed discussion of this phenomena is given by Frank and Reich [50] (see
also Vichnevetsky and Bowles [140] and Trefethen [139]).

3.2. Discrete Lagrangian approach

When the PDE is the Euler–Lagrange equation associated with some Lagrangian L , then
another approach to the method of lines is to discretize the Lagrangian functional directly.
As an example, consider the Lagrangian formulation (13) of the rotating shallow-water
equations. Introduce an Eulerian grid xij = (i�x, j�y)T and another grid in label space, i.e.,
akl = (k�a, l�b)T . For simplicity, assume that �x = �y and �a = �b. First formulate a
discrete conservation law of mass based on a regularized form of (11):

h�x(xij , t) =
∫ ∫

da db h0(a)ψ�x(xij − x(a, t))

where ψ�x is a positive function with ψ�x(x) = ψ�x(−x),
∫∫

dx dy ψ�x(x) = 1 and
lim�x→0 ψ�x = δ. We may now approximate the integral by

h�x,�a(xij , t) =
∑
k,l

�a2h0(akl)ψ�x(xij − x(akl, t)).

This equation can be simplified by introducing particles with location

xkl(t) = x(akl, t)

and mass

mkl = �a2h0(akl),

i.e.,

h�x,�a(xij , t) =
∑
k,l

mklψ�x(xij − xkl(t)).

This formulation is further shortened to

hij (t) =
∑
k,l

mklψij (xkl(t)),

where ψij (·) = ψ�x(· − xij ) and hij (t) = h�x,�a(xij , t).
Now use these formulae to spatially discretize the Lagrangian functional (12),

L�x,�a =
∫

dt
∑
kl

mkl

(
d

dt
xkl + f k × xkl

)
· d

dt
xkl − 1

2

∫
dt
∑
ij

�x2gh2
ij .
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The associated (finite-dimensional) Euler–Lagrange equations are
d2xkl

dt2
+ f k × dxkl

dt
+ g

∑
ij

�x2∇xkl
ψij (xkl)hij = 0.

From a numerical point of view, it is desirable that the basis functions ψij form a partition of
unity, i.e., ∑

ij

ψij (x) = C = const

since this implies∑
ij

∇xkl
ψij (xkl)hij = 0

for hij = const. This property is satisfied by tensor product B-splines over a regular grid
xij , i.e.,

ψij (x) = �x−2φi(x/�x)φj (y/�x)

with B-spline φi . Since
∑

i φi(x) = 1, we obtain C = 1/�x2 and∑
ij

�x2hij =
∑
ij

�x2
∑
kl

mklψij (xkl)

= C�x2
∑
kl

�a2h0(akl)

=
∑
kl

�a2h0(akl),

which encodes conservation of mass over the Eulerian grid. See the papers by Frank, Gottwald
and Reich [45], Frank and Reich [48, 49], Dixon and Reich [38] and Cotter and Reich [35]
for more details.

Particle methods for fluid dynamics were first proposed by Lucy [93] and Gingold and
Monaghan [52] under the name smoothed particle hydrodynamics (SPH). The SPH method
was independently suggested by Salmon [122] in the context of geophysical fluid dynamics.
The particle-mesh method, described in the textbooks by Hockney and Eastwood [64] and
Birdsall and Langdon [11], provides an alternative approach to discrete Lagrangian fluid
dynamics.

4. Implicit time stepping and regularized PDEs

Once a finite-dimensional Hamiltonian system has been derived by any of the methods
described in the previous sections, a symplectic method can be applied in time to complete
the discretization in space and time. This basic approach has been discussed, for example, by
McLachlan [104]. An interesting, non-trivial application has been provided by Frank, Huang
and Leimkuhler [46, 43] for classical spin systems.

In this section, time-stepping methods are discussed from a slightly different point of
view. Namely, we take the infinite-dimensional description as our starting point and apply
a time-stepping method directly to these equations. This approach to the discretization of
PDEs is sometimes referred to as Rothe’s method. Rothe’s approach allows one to study the
stability (and convergence) of time-stepping algorithms for PDEs without having to take a
�x dependence into account. In other words, we will look at implicit time-stepping methods
which do not suffer from a CFL stability condition [111]. The basics of this approach are
discussed in the following subsection. See, e.g., [127] to get a flavour of the theoretical
implications.
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4.1. Rothe’s method and the implicit midpoint time discretization

Represent the class of evolutionary equations by

zt = {z,H} = X (z).

Assume that there is only a single spatial dimension, denoted by x ∈ [0, L] ⊂ R. Furthermore,
appropriate energy conserving boundary conditions (such as periodic boundary conditions)
are assumed.

Two popular methods for discretizing Hamiltonian PDEs in time are the implicit midpoint
method

zn+1 − zn

�t
= X (zn+1/2), zn+1/2 = 1

2
(zn+1 + zn),

and the trapezoidal rule

zn+1 − zn

�t
= X (zn+1) + X (zn)

2
.

The implicit midpoint method preserves a symplectic form � (possibly non-canonical)
provided the associated Poisson bracket is of the general form

{F,G} =
∫

dx

{
δF
δz

· J δG
δz

}
,

where J is a (invertible) constant skew-symmetric operator, i.e.,∫
dx u · (J v) = −

∫
dx(J u) · v

for any two functions u, v : [0, L] → R
k . In the case of the semi-linear wave equation k = 2

and

J =
[

0 +1
−1 0

]
.

The trapezoidal rule is not a symplectic method in the above sense but, since it is conjugate
to the implicit midpoint method by a transformation of variables, the numerical behaviour of
both methods is comparable. (See, for example, the paper by Hairer and Lubich [60].) The
trapezoidal rule extends to second-order evolutionary equations of the form

zt t = F(z).

Elementary manipulations yield the formulation

zn+1 − 2zn + zn−1 = �t2F(zn) +
�t2

4
[F(zn+1) − 2F(zn) + F(zn−1)].

Both the implicit midpoint and the trapezoidal methods lead to fully implicit time-stepping
methods. In many cases one can, however, split off a linear part and write the evolutionary
system in the form

zt t = F(z) = Az + R(z).

Linearly (stable) implicit discretizations are provided by the family of methods

zn+1 − 2zn + zn−1 = �t2F(zn) + α2�t2A[zn+1 − 2zn + zn−1]

for α � 1/2. This is formally equivalent to

zn+1 − 2zn + zn−1 = �t2[id − α2�t2A]−1F(zn), (19)
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where id denotes the identity operator. This scheme is symplectic in the following sense.
Consider the symplectic leapfrog scheme

qn+1 − 2qn + qn−1 = −�t2M−1F(qn)

for a Newtonian system with conservative force F(q), mass matrix M and position vector q.
If we formally identify q = z, M = id − α2�t2A, F(q) = −F(z), then the leapfrog scheme
becomes equivalent to (19).

To illustrate the linearly implicit method (19), apply it to the semi-linear wave
equation (1). Set A = ∂2

x and F(u) = uxx − f (u), then the discretization yields the abstract
numerical scheme

un+1 − 2un + un−1 = �t2
[
id − α2�t2∂2

x

]−1
[uxx − f (u)] , α � 1

2 .

The properties of these schemes applied to linear PDEs can be analysed in some detail.

4.2. Linear analysis of the implicit midpoint method

In this subsection, attention will be restricted to discretizations applied to the linearized wave
equation

utt = uxx − au with a > 0.

A Fourier transform ansatz in space leads to the differential equation

d2

dt2
û = −k2û − aû

where k is the wave number. For simplicity, assume a delta function initial condition (in wave
number space) so

u(x, t) = û(t) Re{u0 eikx}.
Taking oscillatory solutions in time with frequency ω, i.e.,

d2

dt2
û = −ω2û,

leads to the dispersion relation

ω2 = k2 + a

or, equivalently, ω(k) = ±
√

k2 + a.
Now discretize the linear wave equation by the implicit midpoint/trapezoidal method.

The resulting numerical time-stepping method is equivalent to

ûn+1 − 2ûn + ûn−1 = −�t2(k2 + a)ûn − �t2

4
(k2 + a)[ûn+1 − 2ûn + ûn−1].

The behaviour of such a method is best understood in terms of its numerical dispersion relation.
Since the implicit midpoint method is symplectic, we may assume that

ûn+1 = ei��t�t ûn,

where ��t is the ‘numerical’ frequency of the solution. Substituting this formula into the
scheme and after a few manipulations with trigonometric functions, one finds the equivalence

4

�t2
tan2

(
��t(k)�t

2

)
= k2 + a,

or, equivalently,

ω(k)�t

2
= tan

(
��t(k)�t

2

)
. (20)



Numerical methods for Hamiltonian PDEs 5303

This result holds more generally: given a linear system with a dispersion relation ω(k),
discretization by the implicit midpoint/trapezoidal method leads to a numerical dispersion
relation ��t(k) determined by (20). The largest possible numerical frequency is determined
by

lim
|ω(k)�t |→∞

|��t(k)�t | = π.

We also note that ��t(k) inherits the monotonicity of ω(k). Hence, the numerical group
velocity

Vg = d��t

dk

has the same sign as the analytic group velocity

vg = dω

dk
.

The issue of group velocity does not arise in the ODE context and is an important issue in
the PDE context. The group velocity characterizes the speed of energy transport in wave
packets and its sign determines the direction of energy transport [147, chapter 11]. Therefore,
an important property of a numerical scheme is that it reproduces the direction of energy
transport and track as closely as possible the magnitude of the group velocity.

This analysis can be repeated for the scheme (19) with Au = uxx − au, i.e.

ûn+1 − 2ûn + ûn−1 = −�t2(k2 + a)ûn − α2�t2(k2 + a)[ûn+1 − 2ûn + ûn−1],

with α � 1/2. We first recall that the scheme is equivalent to

ûn+1 − 2ûn + ûn−1 = −�t2 ω(k)2

1 + α2�t2ω2(k)
ûn.

This scheme in turn is equivalent to a leapfrog discretization of an equation with frequency ω̃,
where

ω̃2 = ω(k)2

1 + α2�t2ω2(k)
.

The standard numerical dispersion relation for the leapfrog method yields

sin2

(
�t��t(k)

2

)
= �t2ω̃2

4
= �t2ω(k)2

4 + 4α2�t2ω2(k)

and the largest numerical frequency in absolute value is determined by the relation

sin

( |�t��t(k)|
2

)
= 1

2α
,

which has a unique solution for α � 1/2. Note that the sign of the analytic group velocity is
again preserved for any value of α � 1/2. The scheme is also second order accurate for all
wave numbers k with �tω(k) → 0.

When the scheme is applied to the semi-linear wave equation (1), it turns out that
α = 1/

√
2 is a good choice to avoid the potentially unstable 1:3 and 1:4 resonances of

the leapfrog method near stationary solutions for any choice of �t . See the work by Skeel and
Srinivas [131] and Ma, Izaguirre and Skeel [94] on numerically induced resonance instabilities.

We also wish to point out that the fully implicit midpoint method can be unstable when
applied with large time-steps compared to the dynamical time scales present in the model
equation. See Gonzalez and Simo [55], Mandziuk and Schlick [96] and Ascher and Reich [5]
for theoretical results. Energy conserving methods have been proposed as a remedy (see, for
example, Gonzalez [54] and [106]), but lead to fully implicit methods.
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4.3. Equivalent leapfrog time stepping for regularized shallow-water equations

The discussion from the previous section can be extended to the shallow-water equations (13),
which are a prototype model for atmospheric fluid dynamics. An important issue in
atmospheric fluid dynamics is the treatment of poorly resolved inertia-gravity waves. To
circumvent the strict limitations imposed via the CFL condition on the maximum time step
of explicit integration methods, most operational codes make use of some implicitness. At
each time step, fully implicit methods require the solution of a nonlinear system of equations,
whereas linearly implicit methods require only the solution of a linear system. An alternative
strategy has been proposed in the context of the Hamiltonian particle-mesh (HPM) method (see,
e.g., [45] and [49]), which is based on applying a regularization procedure to the continuous
governing equations that renders them suitable for explicit integration.

More specifically, it has been shown by Frank et al [51] that, on a linearized equation
level and zero mean advection, a trapezoidal rule discretization of the shallow-water equations
is essentially equivalent to the leapfrog discretization of the regularized equations

∂2x
∂t2

+ f k × ∂x
∂t

+ g∇x(S ∗ h) = 0 (21)

with

S ∗ h = (
1 − α2∇2

x

)−1
h

provided that

α2 = gH�t2

4
,

f 2�t2

4
� 1,

where H denotes the mean layer depth of the fluid.
To see this, we set f = 0 for simplicity and state that the linearized equations under zero

mean advection can be written as

xt t = −g∇xh, h = H(1 − xx − yy).

These equations give rise to the wave equation

htt = gH(hxx + hyy)

and the regularized form is given by

htt = gHS ∗ (hxx + hyy).

An equivalent formulation is provided by

xt t = −g∇x(S ∗ h), h = H(1 − xx − yy),

which serves as a motivation for the formulation (21).
It should be noted that the regularized equations (21) can be derived from a Lagrangian

variational principle. A leapfrog discretization of the regularized equations is given by

xn+1 − 2xn + xn−1

�t2
+ f k × xn+1 − xn−1

2�t
= −g∇x(S ∗ hn),

hn =
∑
kl

mklψ
( · −xn

kl

)
.

A disadvantage of the formulation (21) is that geostrophic balance, which is defined by

f k × ∂x
∂t

+ g∇xh ≈ 0,
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gets perturbed by the regularization operator. A revised regularization that addresses this
shortcoming has been proposed by Wood, Staniforth and Reich [149]. A semi-Lagrangian
implementation of these improved equations can be found in [121, 132].

In related work, Wingate [148], compared the α-Euler regularization (see, for example,
Holm [65]) to dispersive effects of implicit time-stepping methods.

We finally wish to mention the work of Cotter and Reich [35, 36] on the long-time
preservation of geostrophic balance for large-scale atmospheric flow regimes under the HPM
method.

5. Variational integrators and the Cartan form

When an ODE or PDE is generated by a Lagrangian, instead of transforming to the Hamiltonian
setting, one can discretize the Lagrangian directly and then use a discrete variational principle.
The fundamental geometric object associated with a Lagrangian is the Cartan form, and it is
therefore at the centre of a strategy for geometric integration.

For ODEs, the Cartan form associated with
∫

L(t, q, v) dt with q ∈ Q and v := q̇ is

θL = L dt + Lv(dq − v dt).

It is a semi-basic 1-form on T Q × R. A geometric view of the Euler–Lagrange equations for
L is given by requiring X to satisfy X– dθL = 0, where X is a vector field on T Q × R.

Once the Lagrangian is discretized, a strategy is needed to recover the discrete Cartan
form. In a pioneering paper, Marsden, Patrick and Shkoller [98] showed that by discretizing
the Lagrangian with free variations at the boundary, the Cartan form shows up in the boundary
variation. This theory has been extensively developed in the ODE setting and a review is given
in Marsden and West [102].

For PDEs, this strategy works when there is a well-defined Cartan form. One class of
PDEs where the theory is most successful is scalar first-order field theories with non-degenerate
Lagrangian. For a field q(x, t) with (x, t) ∈ R

2, a Lagrangian L = ∫
dt
∫

dxL(t, x, q, qt , qx)

is non-degenerate when

det


 ∂2L

∂q2
t

∂2L
∂qt ∂qx

∂2L
∂qx∂qt

∂2L
∂q2

x


 
= 0.

The Lagrangian for the semi-linear wave equation (7) is in this class of Lagrangians. However,
neither the Lagrangian for the KdV equation (18) nor the Lagrangian for the shallow-water
equations is in this class.

For scalar first-order field theories, the Cartan form in local coordinates is

θL = ∂L

∂qt

dq ∧ dx − ∂L

∂qx

dq ∧ dt +

(
L − qt

∂L

∂qt

− qx

∂L

∂qx

)
dt ∧ dx. (22)

In [98], it is shown that a range of variational integrators can be constructed for the semi-linear
wave equation which preserve a discrete version of the Cartan form (22).

One weakness of variational integrators is that the geometry—which is used as a basis
for geometric integrator—is dictated by the Lagrangian. Hence, generalization of variational
integrators to higher order field theories, vector-valued fields, systems with constraints, and
singular Lagrangians will depend on the existence of a Cartan form or a generalization of it.
At present, almost all studies which use the Cartan form restrict attention to first-order field
theories—either explicitly or implicitly.

There are many papers in the field theory literature which propose generalizations of the
Cartan form, but the results are not encouraging. A good overview of the issues involved is
given by Gotay [56]. See also [40], [57] and [9] for further discussion and references.
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Even though the geometric aspects of Lagrangian field theory for higher order fields
are not entirely satisfactory in general, there are specific generalizations and special classes
of Lagrangians where one can proceed. Examples are variational integrators for second-
order field theory [81], variational integrators for continuum mechanics and constrained PDEs
[99], construction of variational integrators for the nonlinear Schrödinger equation [32] and
variational integrators for higher order differential equations [136]. One of the great successes
of variational integrators for PDEs is in the application to systems with discontinuities. An
example of this is the work of Fetecau, Marsden, Ortiz and West [41] on simulating collision
of bodies in solid mechanics. A review of recent developments in the theory and application
of variational integrators for PDEs is given by Lew, Marsden, Ortiz and West [89].

The combination of variable time stepping and symplectic integrators has always been a
problem area in geometric integration [85]. However, it has been known since the work of Lee
[83, 84] that variable time stepping could be incorporated into discrete mechanics—and energy
could be conserved as well. In the ODE case, this idea has been combined with variational
integrators to design algorithms that conserve symplecticity, momentum and energy [78].
See also [86] and [30] where further generalization is obtained, and where the role of the
discrete Cartan form is emphasized. The idea of variable time stepping has an immediate
generalization to field theory and results of this type are reported by Chen [27] and Guo and
Wu [58]. However, no backward error analysis is currently available for these methods and
there are potential difficulties with the choice of step size and its numerical implementation.

A related development is the idea of asynchronous variational integrators of Lew, Marsden,
Ortiz and West [88]. In the basic model, the time step is constant in time but can vary across
the spatial mesh. Bookkeeping goes up by an order of magnitude for these methods (see
section 4.3 of [88]) but are relatively efficient and show excellent discrete conservation
of momentum. However, multi-time-step methods are susceptible to resonance-induced
instabilities which are not yet fully understood (see [10, 61, 85] and p 187 of [88]).

The problem of symplectic and multi-symplectic variational discretizations can be
approached from a purely topological viewpoint. For example Guo and Wu [58] starting with
a regular Lagrangian prove using co-homology that the necessary and sufficient condition
for—either continuous or discrete—conservation of symplecticity is that the corresponding
Euler–Lagrange 1-form be closed (see theorem 3 on p 5994 for the continuum case and
theorem 4 on p 6000 for the discrete case).

Backward error analysis of variational integrators for ODEs is done by analogy with
symplectic integrators: when the Lagrangian is non-degenerate, there is a duality with the
Hamiltonian side and one deduces the existence of a modified energy (see section 3.5 and the
footnote on p 172 of [89]). However, a backward error analysis purely on the Lagrangian side
has not been forthcoming.

There are other forms of error analysis which can be applied directly to the Lagrangian.
Müller and Ortiz [112] and Maggi and Morini [95] use �-convergence to prove convergence
of the discrete Lagrangian sum to the continuum Lagrangian. However this theory has—so
far—only been applied to ODEs, requires strong hypotheses on the Lagrangian, and does not
provide any information on ‘geometric’ error.

For PDEs, backward error analysis for variational integrators is still in its infancy. In
a pioneering paper, Oliver, West and Wulff [115] use backward error analysis to study the
approximation properties of variational integrators for the semi-linear wave equation (1).
When f (u) is analytic they prove that the discrete momentum is conserved up to an error
which is exponentially small in the spatial grid size. However, the proofs still rely extensively
on the Hamiltonian formulation of the semi-linear wave equation.
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6. Discretizing multi-symplectic Hamiltonian PDEs

In this section, discretization of multi-symplectic Hamiltonian PDEs is considered taking
the canonical form (15) as a starting point. The principal geometric property of (15) is
conservation of symplecticity, and therefore the strategy is to construct discretizations that
conserve a discrete analogue.

A multi-symplectic integrator is defined in Bridges and Reich [23] to be a discretization
which preserves discrete conservation of symplecticity of a general form

δ+
t ωn

i + δ+
x κn

i = 0, (23)

where δ+
t and δ+

x represent the (abstract) time and space discretization operators, respectively.
More precisely, one should apply discretization schemes to (15) and (16) and determine
whether the resulting discrete symplectic conservation law is satisfied by the discretization of
(15). Similar to symplectic ODE methods, only compact differencing methods (i.e., ‘one-step
methods’ in space and time) satisfying (23) should be called multi-symplectic.

Another approach to this is to work directly with the discrete system and use the concept of
discrete multi-symplecticity introduced by Hydon [72]: given a system on a lattice, a condition
for multi-symplecticity is deduced without reference to a continuum system.

Yet another approach is to view (15) as generated by Hamilton’s principle. Introduce the
Lagrangian

L =
∫

dt

∫
dx

[
1

2
〈Kzt , z〉 +

1

2
〈Lzx, z〉 − S(z)

]
, (24)

then the first variation results in (15). This formulation is used in [72] for a generalization
of multi-symplectic Noether theory. Chen [29] uses the formulation (24) as a basis for a
new definition of multi-symplectic integrator. Chen discretizes the Lagrangian (24) using a
variational integrator and then deduces a Cartan form from boundary variations and shows that
it leads to discrete conservation of symplecticity. However, surprisingly discrete conservation
of symplecticity obtained from the discrete Cartan form does not always agree with that
obtained directly from (23). The reason is simple: the two approaches agree only when
the continuum Stokes theorem implies discrete Stokes theorem. It is easy to construct
discretizations even for one-dimensional base manifolds that do not satisfy a discrete Stokes
theorem: see Castillo et al [26] for examples and references. In general, discrete Stokes
theorem is an additional geometric property that needs to be determined for—or derived as a
part of—multi-symplectic discretizations.

The most widely used strategy for developing discretizations for (15) is to concatenate
one-dimensional schemes. For example, applying the implicit midpoint rule to the PDE (15)
in both space and time yields

Kδ+
t zn

i+1/2 + Lδ+
x zn+1/2

i = ∇zS
(
zn+1/2
i+1/2

)
, (25)

where we define the edge midpoint approximations

zn+1/2
i = 1

2

(
zn+1
i + zn

i

)
, zn

i+1/2 = 1
2

(
zn
i+1 + zn

i

)
,

the cell centre approximation

zn+1/2
i+1/2 = 1

4

(
zn+1
i+1 + zn+1

i + zn
i+1 + zn

i

)
,

and the finite-difference approximations

δ+
t zn

i+1/2 = 1

�t

(
zn+1
i+1/2 − zn

i+1/2

)
, δ+

x zn+1/2
i = 1

�x

(
zn+1/2
i+1 − zn+1/2

i

)
.
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This scheme is an example of a ‘box scheme’. The earliest reference to the use of a box scheme
is Preissman [117] who introduced it for the shallow-water equations. We therefore will refer
to (25) as the Preissman box scheme. Keller [79] introduced a similar box scheme for parabolic
problems. Independently, Wendroff (see [111]) proposed a related box scheme for hyperbolic
problems. The Preissman box scheme (25) exactly preserves a discrete multi-symplectic
conservation law [23].

The Preissman box scheme has a number of nice properties and has been the most
successful of the multi-symplectic integrators particularly when modelling wave propagation
(e.g., Zhao and Qin [152], Ascher and McLachlan [6], Hong and Liu [69], Wang, Wang and
Qin [143] and Wang, Wang, Yang and Wang [144]). The box scheme has been generalized
to the case of space dimension �2 by Hong and Qin [70] and Liu and Qin [92]. Since the
box scheme (25) is implicit in time particular care is needed to solve the resulting (possibly
nonlinear) equations including the definition of appropriate boundary conditions.

The Preissman box scheme is second order accurate in space and time. Higher order
box schemes can be constructed by concatenating higher order implicit Gauss–Legendre
Runge–Kutta methods. This was first done by Reich [120] and extended to partitioned GLRK
methods by Hong, Liu and Sun [67]. This theory is developed in more detail in an application
to nonlinear Dirac equations by Hong and Li [66].

One of the most successful applications of multi-symplectic integrators is to the nonlinear
Schrödinger equation (Islas, Karpeev and Schober [74], Chen, Qin and Tang [34], Islas and
Schober [75], Sun and Qin [135], Hong and Liu [68]). These integrators seem to have several
magic properties when applied to NLS. For example, it is shown by Islas and Schober [76]
that backward error analysis applied to the Preissman box scheme discretization of NLS leads
to the modified equation (to leading order)

iAt + Axx + 2|A|2A +
i

24
�t2Attt +

1

12
�x2Axxxx = 0.

The correction term is of order �t2 + �x2 and just brings in higher order dispersion. The
modified PDE is also Hamiltonian and multi-symplectic.

When periodic boundary conditions are used, spectral methods can be appealing [42].
Multi-symplectic spectral discretizations have been proposed by Bridges and Reich [24], Chen
[28] and Chen and Qin [31]. They show robust behaviour and excellent energy and momentum
conservation, but a comparison with finite-difference-based methods has not been carried out.

Other multi-symplectic discretizations that have been proposed are: schemes for
Boussinesq models for water waves (Huang, Zeng and Qin [71]), multi-symplectic finite-
volume and finite-element methods (Reich [119] and Zhen, Bai, Li and Wu [153]), multi-
symplectic schemes for Maxwell’s equations [134], higher order schemes constructed using
composition and other methods (Sun and Qin [137, 138], Wang and Qin [145, 146], Wang and
Wang [142] and Chen and Qin [33]).

Backward error analysis for Hamiltonian ODEs is one of the great triumphs of geometric
integration. Backward error analysis for multi-symplectic PDEs presents several challenges
and requires a new way of thinking, because the symplectic group structure of ODEs is lost.
There has been some progress towards a backward error analysis for the general class of
multi-symplectic PDEs (15) by Moore and Reich [108, 109]. Rather than develop a theory
for a modified Hamiltonian, they propose a theory for a modified symplectic structure. This
theory is developed in detail for explicit symplectic Euler in space and time in [108] and in
the PhD thesis of Moore [107]. The matrices K and L are split so that

K = K+ + K− and L = L+ + L−,
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with

KT
+ = −K− and LT

+ = −L−.

The Euler box scheme can then be represented in the form

K+δ
+
t zn

i + K−δ−
t zn

i + L+δ
+
x zn

i + L−δ−
x zn

i = ∇zS
(
zn
i

)
,

where δ+
t , δ+

x are defined as before and δ−
t , δ−

x are the corresponding backward differencing
operators [111]. It is shown in [108] that this scheme is multi-symplectic. The modified
multi-symplectic PDE associated with this scheme to leading order is

Kzt +
�t

2
(K+ − K−)zt t + Lzx +

�x

2
(L+ − L−)zxx = ∇zS(z).

In contrast to modified equations for ODEs, here the Hamiltonian function is unchanged,
but higher order derivatives are generated in the multi-symplectic structure. Note also the
symmetry in the error terms for x and t. Moore and Reich then show that this equation has
a new multi-symplectic structure on a higher dimensional phase space. This scheme can be
continued, in principle, to any order (see p 645 of [108]). Another useful outcome of this
theory is a modified conservation law for energy and momentum. See section 5.3 of [108] for
the details of this theory applied to the nonlinear wave equation.

Let us finally consider the non-compact discretization

�t−1K
(
zn+1
i − zn−1

i

)
+ �x−1L

(
zn
i+1 − zn

i−1

) = 2∇zS
(
zn
i

)
.

This scheme satisfies a discrete conservation law of symplecticity of the form (23) but would
not be called multi-symplectic because the non-compact nature of its spatial and temporal
discretizations [47, 107].

6.1. Discrete energy and momentum conservation

How well do multi-symplectic integrators conserve local or global momentum and energy?
In this subsection some results on this are summarized. There is still much to be done in this
area however.

When a uniform mesh is used there is no reason to expect discrete energy or momentum
to be conserved exactly. However, there is a special case of interest. It is proved in [23] that
if the covariant Hamiltonian function S(z) is a quadratic function of z and the box scheme is
used, then both discrete energy and discrete momentum are conserved to machine accuracy.

When S(z) is super-quadratic, and the box scheme (25) is used, global momentum (sum
over space lattice points) is still conserved to machine accuracy since it is a quadratic invariant.
However, the local momentum conservation law (LMCL) is not conserved.

When S(z) is super-quadratic the local energy conservation law (LECL) and the local
momentum conservation law are generally well behaved, but the results are still incomplete.
For the nonlinear Dirac equation Hong and Li [66] show that the LECL and LMCL grow
algebraically with the mesh size and time step, when multi-symplectic Runge–Kutta methods
are used. For the NLS equation, Islas and Schober [76] show that LECL and LMCL grow
quadratically in the time step when the box scheme is used.

Backward error analysis provides interesting information about modified energy and
momentum conservation laws. General aspects of the theory of modified conservation laws
is developed in Moore and Reich [109]. Islas and Schober [76] construct the modified LECL
and LMCL for the box scheme applied to the NLS equation. For example, the modified LECL
is

∂

∂t

[
E +

�t2

24
zT
ttKzt +

�x2

48
zT
xxLzx

]
+

∂

∂x

[
F +

�x2

48
zT
xtLzx

]
= 0.
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Numerical evaluation of this modified LECL shows that it is satisfied to fourth order in �t ,
confirming the order estimate in the backward error analysis.

It is tempting to replace the local conservation laws for energy and momentum by contour
integrals. For example, replace the energy conservation law by∮

F dt − E dx = 0. (26)

Clearly, in the continuum setting this formulation is equivalent to Et + Fx = 0 (assuming the
necessary smoothness of the functions involved). However, the discrete form of the integral
(26) may not be equivalent to the direct discretization of Et + Fx—unless there is a discrete
Stokes theorem. A discrete Stokes theorem does not imply that energy is conserved, merely
that discretizing the contour integral

∮
F dt−E dx is equivalent to the discretization of Et + Fx .

6.2. Analysis of the discretized dispersion relation

In this section, we summarize a few results on multi-symplectic discretization methods for the
class of linear PDEs

Kzt + Lzx = Az (27)

where A is a symmetric matrix. Since we are interested in wave-like solutions we seek
(complex-valued) solutions, i.e.,

z(x, t) = ei(kx+ωt)a. (28)

Here, k denotes the wave number and ω denotes the wave frequency, which must satisfy the
dispersion relation [13]

D(ω, k) := det(iωK + ikL − A) = 0. (29)

It is important to note that the matrix used in this calculation is self-adjoint, i.e., D(ω, k) =
D(ω, k), from which it is immediate that 0 = D(ω, k) = D(ω, k) for real k. Hence, for any
given real k, solutions ω of the dispersion relation are either real or come in complex-conjugate
pairs meaning there is no diffusion [147, chapter 11].

With the dispersion relation, one can write the frequency as a function of the wave number,
such that

D(ω, k) = 0 ⇐⇒ ω = ω(k),

at least locally. Then, depending on the function D, there may be multiple frequencies ωi for
every k, corresponding to different modes. One could also pose the reverse question and ask
how many different wave numbers k can give rise to a given frequency ω.

We wish to extend the linear dispersion analysis from previous sections to multi-symplectic
integration methods. Applying, for example, the Preissman box scheme to the linear PDE
(27) yields

Kδ+
t zn

i+1/2 + Lδ+
x zn+1/2

i = Azn+1/2
i+1/2 . (30)

Based upon the results of [109], the modified equation for the linear PDE (27) can be stated
explicitly as

K
(

zt − τ 2

3
zt t t +

2τ 4

15
zt t t t t − · · ·

)
+ L

(
zx − χ2

3
zxxx +

2χ4

15
zxxxxx − · · ·

)
= Az. (31)

Here, we introduced the notation

τ = �t

2
and χ = �x

2
,

which we will use through the remainder of this section.
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The expansion (31) formally yields a higher order linear PDE and we may substitute a
standard solution ansatz of the form

z(x, t) = ei(�t+Kx)a

into the equation. This yields(
iK
(

� +
τ 2�3

3
+

2τ 4�5

15
+ · · ·

)
+ iL

(
K +

χ2K3

3
+

2χ4K5

15
+ · · ·

)
− A

)
a = 0.

Then, due to the identity

tan(θ) = θ +
θ3

3
+

2θ5

15
+ · · · ,

we obtain (
i

τ
tan(τ�)K +

i

χ
tan(χK)L − A

)
a = 0. (32)

The modified equation can also be stated in closed form (because the expansions in (31)
converge) and is given by

1

τ
K tanh(τ∂t )z +

1

χ
L tanh(χ∂x)z = Az.

Furthermore, the following theorem follows immediately from (32).

Theorem 1. The Preissman box scheme (30) preserves the analytic dispersion relation of the
PDE, such that

D(ω, k) = 0, (33)

for D as given in (29) with

ω = tan(τ�)

τ
and k = tan(χK)

χ
, (34)

for −π
2 < τ� < π

2 and −π
2 < χK < π

2 . In other words, the numerical dispersion relation is
given by

DN(�,K) := D
(

tan(τ�)

τ
,

tan(χK)

χ

)
= 0.

This result was first published by Ascher and McLachlan [6]. The numerical group
velocity Vg is defined by

Vg = d

dK
�(K) = −∂D

∂k

∂k

∂K

/
∂D
∂ω

∂ω

∂�
= vg

∂k

∂K

/
∂ω

∂�
.

Since both
∂ω

∂�
> 0 and

∂k

∂K
> 0,

we have derived

Corollary 1. The sign of the analytic group velocity vg is preserved under the Preissman box
scheme.

These results explain the absence of parasitic waves in space and time for the Preissman
box scheme for all �t and �x. A more detailed discussion of numerical dispersion relations
of multi-symplectic methods including higher order Gauss–Legendre Runge–Kutta methods
can be found in [47]. We also mention the work of Frank on numerical conservation of wave
action by multi-symplectic methods [44].
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7. Multi-symplectic discretizations on the TEA bundle

A promising new direction in multi-symplectic discretization is the combination of discrete
differential forms with multi-symplectic structure. In order to implement this idea, multi-
symplectic PDEs have to be reformulated using differential forms. Since it is the base
manifold that is discretized, the formulation requires differential forms on the base manifold
(spacetime) [15].

For illustration take spacetime to be (M, g) with M = R
2 with a flat metric g (either

Euclidean or Lorentzian) and standard volume form. Then a Hodge star operator � and
codifferential δ can be defined. We consider the elliptic equation

uxx + uyy + f (u) = 0.

A multi-symplectic formulation is provided by (3) with

K =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 , L =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 ,

and S the algebraic function

S(z) = 1
2 (p1)

2 + 1
2 (p2)

2 + F(u) with z = (u, p1, p2, r)
T .

This formulation has a coordinate-free representation

δp = f (u) du + δR = p dp = 0 (35)

where (u, p, R) are elements in the total exterior algebra (TEA) of R
2. Details of multi-

symplectic PDEs on the TEA bundle are developed in Bridges [15].
A discretization of (35) is carried out by using discrete differential forms [12, 37, 63] or

difference forms [97]. To illustrate the discretization of the formulation (35), first consider the
case of one-dimensional base manifold.

The Newtonian equation qtt = −V ′(q) for scalar q can formulated in a coordinate-free
way as

dq = P and δP = V ′(q) (36)

where dq := qt dt and δ = −�d� is the codifferential with � the Hodge star operator
normalized by � dt = 1 [15, 22]. Now introduce a discretization of time, with qn ≈ q(n�t),
and approximate the differential forms by

�+qn = P n+1/2 and δ−P n+1/2 = V ′(qn).

Using difference forms with �t = h1�
1, where �1 is a basis vector for discrete 1-forms and

h1 is a scale factor,

�+qn = (qn+1 − qn) ∧ �1 = (qn+1 − qn)

h1
∧ h1�

1,

and the simplest approximation of the 1-form P n+1/2 ≈ P((n + 1/2)�t) is

P n+1/2 = pn+ 1
2 �t = pn+ 1

2 h1�
1.

For the codifferential, recall that δ is the adjoint of d with respect to the Riemannian
metric on the base manifold—integrated over time. Use the discrete analogue:
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n

Pn+1/2 ∧ ��+qn =
∑

n

�+qn ∧ �P n+1/2

=
∑

n

�+(qn ∧ �P n−1/2) −
∑

n

qn ∧ �−�P n+1/2

= −
∑

n

qn ∧ ���−�P n+1/2

=
∑

n

qn ∧ �δ−P n+1/2,

assuming suitable endpoint conditions, with δ− = −��−�, where

�−qn = (qn − qn−1) ∧ �1 = (qn − qn−1)

h1
∧ h1�

1.

Applying this formula to P n+1/2 results in

δ−P n+1/2 =
(−pn+ 1

2 + pn− 1
2
)

h1
.

Combining these equations

qn+1 = qn + h1p
n+ 1

2 and pn+ 1
2 = pn− 1

2 − h1V
′(qn).

This algorithm is just the staggered formulation of the Störmer–Verlet method deduced from
the viewpoint of the geometry of time! However, this scheme is obtained by the simplest
choice of discretization of the differential forms.

One of the curiosities of this formulation is that the 1-form P = p(t) dt is different
from the momentum in classical mechanics, it is closer to an impulse. The diagram below
shows how the geometry of (36) differs from that of classical mechanics (cf Bridges and
Lawson [22]).

In this diagram, Q is one dimensional and the left branch shows phase space for classical
mechanics. On the right is the TEA formulation. An interesting aspect of the right branch is
that the Hamiltonian function is clearly a section of the vertical part of T ∗∧(T ∗M). See [22]
for details of this structure.
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These ideas generalize in a straightforward way to manifolds of dimension greater than 1
and to manifolds with curvature [20, 22]. Consider the discretization of (35) using the theory
of difference forms of Mansfield and Hydon [97]. Introduce a lattice for R

2,

0-form

1-form

2-form

and discretize u as a 0-form, p as a 1-form and R as a 2-form, and introduce discretizations for
d, Hodge star and δ.

Let ui,j = u(i�x1, j�x2) and define the two difference operators

�+ui,j = (ui+1,j − ui,j ) ∧ �1 + (ui,j+1 − ui,j ) ∧ �2,

�−ui,j = (ui,j − ui−1,j ) ∧ �1 + (ui,j − ui,j−1) ∧ �2,

where �1 and �2 are basis vectors for the 1-forms and �xk = hk�
k, k = 1, 2, with scaling

factors h1 and h2. Hodge star is defined by

�1 = h1h2�
1 ∧ �2, �h1h2�

1 ∧ �2 = 1,

�h1�
1 = h2�

2, �h2�
2 = −h1�

1.

Take the simplest discrete representation for the 1-forms and 2-forms:

pi,j = p
i+1/2,j

1 h1�
1 + p

i,j+1/2
2 h2�

2, Ri+1/2,j+1/2 = ri+1/2,j+1/2h1h2�
1 ∧ �2.

For the codifferential proceed as in the one-dimensional case and define the discrete
codifferential δ− to be the adjoint of �− with respect to the induced inner product on Z × Z.
For example, ∑

i,j

�+ui,j ∧ �pi,j =
∑
i,j

ui,j ∧ �δ−pi,j ,

with

δ−pi,j = −��−�pi,j .

Let us go through this definition in detail. We first find that

�pi,j = p
i+1/2,j

1 h2�
2 − p

i,j+1/2
2 h1�

1.

Application of the discrete differential operator �− leads to

�−�pi,j = (
p

i+1/2,j

1 − p
i−1/2,j

1

)
h2�

2 ∧ �1 − (
p

i,j+1/2
2 − p

i,j−1/2
2

)
h1�

1 ∧ �2

= −
[

p
i+1/2,j

1 − p
i−1/2,j

1

h1
+

p
i,j+1/2
2 − p

i,j−1/2
2

h2

]
h1h2�

1 ∧ �2.

The desired formula is then given by

δ−pi,j = −
[

p
i+1/2,j

1 − p
i−1/2,j

1

h1
+

p
i,j+1/2
2 − p

i,j−1/2
2

h2

]
.
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Substituting the discretized forms and the discrete operators �+, δ− into the governing
equations (35) results in

−
(

p
i+1/2,j

1 − p
i−1/2,j

1

h1

)
−
(

p
j,j+1/2
2 − p

i,j−1/2
2

h2

)
= f (ui,j ),

(
ui+1,j − ui,j

h1

)
−
(

ri+1/2,j+1/2 − ri+1/2,j−1/2

h2

)
= p

i+1/2,j

1 ,

(
ri+1/2,j+1/2 − ri−1/2,j+1/2

h1

)
+

(
ui,j+1 − ui,j

h2

)
= p

i,j+1/2
2 ,

−
(

p
i+1,j+1/2
2 − p

i,j+1/2
2

h1

)
+

(
p

i+1/2,j+1
1 − p

i+1/2,j

1

h2

)
= 0.

This discretization leads to a staggered box scheme, which is equivalent to the standard
central difference approximation

ui+1,j − 2ui,j + ui−1,j

(�x1)2
+

ui,j+1 − 2ui,j + ui,j−1

(�x2)2
+ f (ui,j ) = 0.

While the examples shown above are simple and lead to well-known algorithms, there is
a well-defined strategy for generalization: replace the continuum differential forms on the
base manifold by discrete differential forms on the lattice version of the base manifold. It is
straightforward to show that the above scheme satisfies discrete conservation of symplecticity
[23]. This property and other generalizations are considered by Bridges and Hydon [20].
When the base manifold is covered by a logically rectangular grid, the ideas of mimetic
differencing [73, 128] will also be useful for discretization.

Appendix

We give a brief description of the numerical experiment from section 1. The Preissman box
scheme (25) has been applied to the multi-symplectic formulation (14) of the wave equation (1)
with f ≡ 0 (linear wave equation). The computational domain is (x, t) ∈ [0, 20] × [0, 20]
with absorbing boundary conditions ut = ux at x = 0 and ut = −ux at x = 20. Initial
conditions at time t = 0 are v(x, 0) = 0 and u(x, 0) = exp(−(x − 10)2). The mesh size is
given by �x = 0.1 and the step size by �t = 0.1, respectively. The boundary conditions are
implemented using the equations

vn
0 = −wn

0 , vn
I = wn

I , for all n = 0, 1, 2, . . . .
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[77] Jiménez S 1994 Derivation of the discrete conservation laws for a family of finite difference schemes
Appl. Math. Comput. 64 13

[78] Kane C, Marsden J E and Ortiz M 1999 Symplectic-energy–momentum preserving variational integrators
J. Math. Phys. 40 3353–71

[79] Keller H B 1971 A new difference scheme for parabolic problems Numerical Solution of Partial Differential
Equations: II (SYNSPADE 1970) (New York: Academic) pp 327–50

[80] Keng F and Qin M Z 1987 The symplectic method for the computation of Hamiltonian equations Lecture
Notes in Mathematics vol 1297, ed Y L Zhu and B Y Guo (Berlin: Springer) pp 1–37

[81] Kournabaeva S and Shkoller S 2000 A variational approach to second-order multisymplectic field theories
J. Geom. Phys. 35 333–66

[82] Lawson J K 2000 A frame bundle generalization of multisymplectic geometry Rep. Math. Phys. 45 183–205
[83] Lee T D 1982 Can time be a discrete dynamical variable? Phys. Lett. B 122 217–20
[84] Lee T D 1987 Difference equations and conservation laws J. Stat. Phys. 46 843–60
[85] Leimkuhler B and Reich S 2005 Simulating Hamiltonian Dynamics (Cambridge: Cambridge University Press)
[86] De León M and de Diego D M 2002 Variational integrators and time-dependent Lagrangian systems

Rep. Math. Phys. 49 183–92
[87] Leveque R J 2002 Finite Volume Methods for Hyperbolic Problems (New York: Cambridge University Press)
[88] Lew A, Marsden J E, Ortiz M and West M 2003 Asynchronous variational integrators Arch. Ration. Mech.

Anal 167 85–146
[89] Lew A, Marsden J E, Ortiz M and West M 2004 Variational time integrators Int. J. Numer. Meth.

Eng. 60 153–212
[90] Li C W and Qin M Z 1988 A symplectic difference scheme for the infinite dimensional Hamiltonian system

J. Comput. Appl. Math. 6 164–74
[91] Li S and Vu-Quoc L 1995 Finite difference calculus invariant structure of a class of algorithms for the nonlinear

Klein–Gordon equation SIAM J. Numer. Anal. 32 1839–75
[92] Liu T and Qin M Z 2002 Multisymplectic geometry and multisymplectic Preissman scheme for the KP equation

J. Math. Phys. 43 4060–77
[93] Lucy L B 1977 A numerical approach to the testing of the fission hypothesis Astron. J. 82 1013–24
[94] Ma Q, Izaguirre J and Skeel R D 2003 Verlet-I/r-RESPA is limited by nonlinear stability SIAM J. Sci.

Comput. 24 1951–73
[95] Maggi F and Morini M 2004 A γ -convergence result for variational integrators of quadratic Lagrangians

ESIAM: Control Optim. Calc. Var. 10 656–65
[96] Mandziuk M and Schlick T 1995 Resonance in the dynamics of chemical systems simulated by the implicit-

midpoint scheme Chem. Phys. Lett. 237 525–35
[97] Mansfield E L and Hydon P E 2004 Difference forms Technical Report (Institute of Mathematics, University

of Kent)
[98] Marsden J E, Patrick G P and Shkoller S 1999 Multi-symplectic geometry, variational integrators, and nonlinear

PDEs Commun. Math. Phys. 199 351–95
[99] Marsden J E, Pekarsky S, Shkoller S and West M 2001 Variational methods, multisymplectic geometry and

continuum mechanics J. Geom. Phys. 38 253–84
[100] Marsden J E and Ratiu T 1998 Introduction to Mechanics and Symmetry 2nd edn (New York: Springer)
[101] Marsden J E and Shkoller S 1999 Multi-symplectic geometry, covariant Hamiltonians and water waves

Math. Proc. Camb. Phil. Soc. 125 553–75
[102] Marsden J E and West M 2001 Discrete mechanics and variational integrators Acta Numer. 10 357–514
[103] McLachlan R I 1993 Explicit Lie–Poisson integration and the Euler equations Phys. Rev. Lett. 71 3043–6
[104] McLachlan R I 1994 Symplectic integration of Hamiltonian wave equations Numer. Math. 66 465–92
[105] McLachlan R I and Quispel G R W 2002 Splitting methods Acta Numer. 11 341–434
[106] McLachlan R I, Quispel G R W and Robidoux N 1999 Geometric integration using discrete gradients

Phil. Trans. R. Soc. A 357 1021–46

http://dx.doi.org/10.1098/rspa.2004.1444
http://dx.doi.org/10.1016/S0898-1221(97)00009-6
http://dx.doi.org/10.1006/jcph.2001.6854
http://dx.doi.org/10.1016/j.jcp.2003.12.010
http://dx.doi.org/10.1016/j.matcom.2005.01.006
http://dx.doi.org/10.1016/0096-3003(94)90137-6
http://dx.doi.org/10.1063/1.532892
http://dx.doi.org/10.1016/S0393-0440(00)00012-7
http://dx.doi.org/10.1016/S0034-4877(00)89031-X
http://dx.doi.org/10.1016/0370-2693(83)90687-1
http://dx.doi.org/10.1007/BF01011145
http://dx.doi.org/10.1016/S0034-4877(02)80017-9
http://dx.doi.org/10.1007/s00205-002-0212-y
http://dx.doi.org/10.1002/nme.958
http://dx.doi.org/10.1137/0732083
http://dx.doi.org/10.1063/1.1487444
http://dx.doi.org/10.1086/112164
http://dx.doi.org/10.1137/S1064827501399833
http://dx.doi.org/10.1051/cocv:2004025
http://dx.doi.org/10.1016/0009-2614(95)00316-V
http://dx.doi.org/10.1007/s002200050505
http://dx.doi.org/10.1016/S0393-0440(00)00066-8
http://dx.doi.org/10.1017/S0305004198002953
http://dx.doi.org/10.1017/S096249290100006X
http://dx.doi.org/10.1103/PhysRevLett.71.3043
http://dx.doi.org/10.1007/BF01385708
http://dx.doi.org/10.1017/S0962492902000053
http://dx.doi.org/10.1098/rsta.1999.0363


Numerical methods for Hamiltonian PDEs 5319

[107] Moore B E 2003 Geometric Integration of multi-symplectic Hamiltonian PDEs PhD Thesis University of
Surrey

[108] Moore B E and Reich S 2003 Backward error analysis for multi-symplectic integration methods
Numer. Math. 95 625–52

[109] Moore B E and Reich S 2003 Multi-symplectic integrators for Hamiltonian PDEs Future Gener. Comput.
Syst. 19 395–402

[110] Morrison P J 1998 Hamiltonian description of the ideal fluid Rev. Mod. Phys. 70 467–521
[111] Morton K W and Mayers D F 2005 Numerical Solution of Partial Differential Equations 2nd edn (Cambridge:

Cambridge University Press)
[112] Müller S and Ortiz M 2004 On the γ -convergence of discrete dynamics and variational integrators J. Nonlinear

Sci. 14 279–96
[113] Neishtadt A I 1984 The separation of motions in systems with rapidly rotating phase J. Appl. Math.

Mech. 48 133–9
[114] Norris L K 1993 Generalized symplectic geometry on the frame bundle of a manifold Proc. Symp. Pure Math.

54 435–65
[115] Oliver M, West M and Wulff C 2004 Approximate momentum conservation for spatial semidiscretizations of

nonlinear wave equations Numer. Math. 97 493–535
[116] Olver P J 1986 Applications of Lie Groups to Differential Equations (New York: Springer)
[117] Preissman A 1961 Propagation des intumescences dan les canaux et riviéres First Congress French Association
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